Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6745, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185990

RESUMO

Enhancers are important cis-regulatory elements controlling cell-type specific expression patterns of genes. Furthermore, combinations of enhancers and minimal promoters are utilized to construct small, artificial promoters for gene delivery vectors. Large-scale functional screening methodology to construct genomic maps of enhancer activities has been successfully established in cultured cell lines, however, not yet applied to terminally differentiated cells and tissues in a living animal. Here, we transposed the Self-Transcribing Active Regulatory Region Sequencing (STARR-seq) technique to the mouse brain using adeno-associated-viruses (AAV) for the delivery of a highly complex screening library tiling entire genomic regions and covering in total 3 Mb of the mouse genome. We identified 483 sequences with enhancer activity, including sequences that were not predicted by DNA accessibility or histone marks. Characterizing the expression patterns of fluorescent reporters controlled by nine candidate sequences, we observed differential expression patterns also in sparse cell types. Together, our study provides an entry point for the unbiased study of enhancer activities in organisms during health and disease.


Assuntos
Elementos Facilitadores Genéticos , Genômica , Animais , Camundongos , Genômica/métodos , Mapeamento Cromossômico/métodos , Regiões Promotoras Genéticas , Encéfalo
2.
Acta Physiol (Oxf) ; 234(2): e13773, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34985199

RESUMO

AIMS: The mammalian gut is the largest endocrine organ. Dozens of hormones secreted by enteroendocrine cells regulate a variety of physiological functions of the gut but also of the pancreas and brain. Here, we examined the role of the helix-loop-helix transcription factor ID2 during the differentiation of intestinal stem cells along the enteroendocrine lineage. METHODS: To assess the functions of ID2 in the adult mouse small intestine, we used single-cell RNA sequencing, genetically modified mice, and organoid assays. RESULTS: We found that in the adult intestinal epithelium Id2 is predominantly expressed in enterochromaffin and peptidergic enteroendocrine cells. Consistently, the loss of Id2 leads to the reduction of Chromogranin A-positive enteroendocrine cells. In contrast, the numbers of tuft cells are increased in Id2 mutant small intestine. Moreover, ablation of Id2 elevates the numbers of Serotonin+ enterochromaffin cells and Ghrelin+ X-cells in the posterior part of the small intestine. Finally, ID2 acts downstream of BMP signalling during the differentiation of Glucagon-like peptide-1+ L-cells and Cholecystokinin+ I-cells towards Neurotensin+ PYY+ N-cells. CONCLUSION: ID2 plays an important role in cell fate decisions in the adult small intestine. First, ID2 is essential for establishing a differentiation gradient for enterochromaffin and X-cells along the anterior-posterior axis of the gut. Next, ID2 is necessary for the differentiation of N-cells thus ensuring a differentiation gradient along the crypt-villi axis. Finally, ID2 suppresses the commitment of secretory intestinal epithelial progenitors towards tuft cell lineage and thus controls host immune response to commensal and parasitic microbiota.


Assuntos
Diferenciação Celular , Células Enteroendócrinas , Proteína 2 Inibidora de Diferenciação/genética , Fatores de Transcrição , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Mucosa Intestinal , Intestino Delgado/citologia , Mamíferos , Camundongos , Fatores de Transcrição/genética
3.
Front Immunol ; 12: 824696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35116043

RESUMO

Surgical interventions rapidly trigger a cascade of molecular, cellular, and neural signaling responses that ultimately reach remote organs, including the brain. Using a mouse model of orthopedic surgery, we have previously demonstrated hippocampal metabolic, structural, and functional changes associated with cognitive impairment. However, the nature of the underlying signals responsible for such periphery-to-brain communication remains hitherto elusive. Here we present the first exploratory study that tests the hypothesis of extracellular vesicles (EVs) as potential mediators carrying information from the injured tissue to the distal organs including the brain. The primary goal was to investigate whether the cargo of circulating EVs after surgery can undergo quantitative changes that could potentially trigger phenotypic modifications in the target tissues. EVs were isolated from the serum of the mice subjected to a tibia surgery after 6, 24, and 72 h, and the proteome and miRNAome were investigated using mass spectrometry and RNA-seq approaches. We found substantial differential expression of proteins and miRNAs starting at 6 h post-surgery and peaking at 24 h. Interestingly, one of the up-regulated proteins at 24 h was α-synuclein, a pathogenic hallmark of certain neurodegenerative syndromes. Analysis of miRNA target mRNA and corresponding biological pathways indicate the potential of post-surgery EVs to modify the extracellular matrix of the recipient cells and regulate metabolic processes including fatty acid metabolism. We conclude that surgery alters the cargo of circulating EVs in the blood, and our results suggest EVs as potential systemic signal carriers mediating remote effects of surgery on the brain.


Assuntos
Biomarcadores , Vesículas Extracelulares/metabolismo , Ferimentos e Lesões/metabolismo , Animais , Fracionamento Químico , Cromatografia Líquida , Modelos Animais de Doenças , Suscetibilidade a Doenças , Vesículas Extracelulares/ultraestrutura , Camundongos , MicroRNAs/genética , Proteoma , Proteômica/métodos , RNA Mensageiro/genética , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Espectrometria de Massas em Tandem , Ferimentos e Lesões/sangue , Ferimentos e Lesões/etiologia
4.
Development ; 148(2)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33298460

RESUMO

Primordial germ cells (PGCs) are the precursors of germ cells, which migrate to the genital ridge during early development. Relatively little is known about PGCs after their migration. We studied this post-migratory stage using microscopy and sequencing techniques, and found that many PGC-specific genes, including genes known to induce PGC fate in the mouse, are only activated several days after migration. At this same time point, PGC nuclei become extremely gyrated, displaying general broad opening of chromatin and high levels of intergenic transcription. This is accompanied by changes in nuage morphology, expression of large loci (PGC-expressed non-coding RNA loci, PERLs) that are enriched for retro-transposons and piRNAs, and a rise in piRNA biogenesis signatures. Interestingly, no nuclear Piwi protein could be detected at any time point, indicating that the zebrafish piRNA pathway is fully cytoplasmic. Our data show that the post-migratory stage of zebrafish PGCs holds many cues to both germ cell fate establishment and piRNA pathway activation.


Assuntos
Núcleo Celular/genética , Células Germinativas/metabolismo , Transcrição Gênica , Peixe-Zebra/genética , Animais , Núcleo Celular/ultraestrutura , Elementos de DNA Transponíveis/genética , DNA Intergênico/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Fertilização , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Células Germinativas/ultraestrutura , Mutação/genética , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Regulação para Cima/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Zigoto/metabolismo
5.
Development ; 147(18)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32878924

RESUMO

The identity of embryonic gastric epithelial progenitors is unknown. We used single-cell RNA-sequencing, genetic lineage tracing and organoid assays to assess whether Axin2- and Lgr5-expressing cells are gastric progenitors in the developing mouse stomach. We show that Axin2+ cells represent a transient population of embryonic epithelial cells in the forestomach. Lgr5+ cells generate both glandular corpus and squamous forestomach organoids ex vivo Only Lgr5+ progenitors give rise to zymogenic cells in culture. Modulating the activity of the WNT, BMP and Notch pathways in vivo and ex vivo, we found that WNTs are essential for the maintenance of Lgr5+ epithelial cells. Notch prevents differentiation of the embryonic epithelial cells along all secretory lineages and hence ensures their maintenance. Whereas WNTs promote differentiation of the embryonic progenitors along the zymogenic cell lineage, BMPs enhance their differentiation along the parietal lineage. In contrast, WNTs and BMPs are required to suppress differentiation of embryonic gastric epithelium along the pit cell lineage. Thus, coordinated action of the WNT, BMP and Notch pathways controls cell fate determination in the embryonic gastric epithelium.


Assuntos
Linhagem da Célula/fisiologia , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Estômago/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Epiteliais/fisiologia , Feminino , Mucosa Gástrica/fisiologia , Camundongos , Organoides/metabolismo , Organoides/fisiologia , Células-Tronco/fisiologia
6.
Mol Cell ; 78(5): 975-985.e7, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32320643

RESUMO

DNA single-strand breaks (SSBs) are among the most common lesions in the genome, arising spontaneously and as intermediates of many DNA transactions. Nevertheless, in contrast to double-strand breaks (DSBs), their distribution in the genome has hardly been addressed in a meaningful way. We now present a technique based on genome-wide ligation of 3'-OH ends followed by sequencing (GLOE-Seq) and an associated computational pipeline designed for capturing SSBs but versatile enough to be applied to any lesion convertible into a free 3'-OH terminus. We demonstrate its applicability to mapping of Okazaki fragments without prior size selection and provide insight into the relative contributions of DNA ligase 1 and ligase 3 to Okazaki fragment maturation in human cells. In addition, our analysis reveals biases and asymmetries in the distribution of spontaneous SSBs in yeast and human chromatin, distinct from the patterns of DSBs.


Assuntos
Mapeamento Cromossômico/métodos , Replicação do DNA/genética , Análise de Sequência de DNA/métodos , Cromatina , DNA/genética , Quebras de DNA de Cadeia Simples , Dano ao DNA/genética , DNA Ligase Dependente de ATP/genética , Reparo do DNA/genética , Genoma/genética , Humanos , Nucleotídeos , Saccharomyces cerevisiae/genética
7.
Elife ; 82019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30860479

RESUMO

Forced transcription factor expression can transdifferentiate somatic cells into other specialised cell types or reprogram them into induced pluripotent stem cells (iPSCs) with variable efficiency. To better understand the heterogeneity of these processes, we used single-cell RNA sequencing to follow the transdifferentation of murine pre-B cells into macrophages as well as their reprogramming into iPSCs. Even in these highly efficient systems, there was substantial variation in the speed and path of fate conversion. We predicted and validated that these differences are inversely coupled and arise in the starting cell population, with Mychigh large pre-BII cells transdifferentiating slowly but reprogramming efficiently and Myclow small pre-BII cells transdifferentiating rapidly but failing to reprogram. Strikingly, differences in Myc activity predict the efficiency of reprogramming across a wide range of somatic cell types. These results illustrate how single cell expression and computational analyses can identify the origins of heterogeneity in cell fate conversion processes.


Assuntos
Linhagem da Célula , Transdiferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células Precursoras de Linfócitos B/citologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Transcriptoma
8.
MethodsX ; 6: 265-272, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788220

RESUMO

RNA interference was first described in the nematode Caenorhabditis elegans. Ever since, several new endogenous small RNA pathways have been described and characterized to different degrees. The very prominent secondary small interfering RNAs, also called 22G-RNAs, bear a 5' triphosphate group after loading into an Argonaute protein. This creates a technical issue, since 5'PPP groups decrease cloning efficiency for small RNA sequencing. To increase cloning efficiency of these small RNA species, a common practice in the field is the treatment of RNA samples, prior to library preparation, with Tobacco Acid pyrophosphatase (TAP). Recently, TAP production and supply was discontinued, so an alternative must be devised. We turned to RNA 5' pyrophosphohydrolase (RppH), a commercially available pyrophosphatase isolated from E. coli. Here we directly compare TAP and RppH in their use for small RNA library preparation. We show that RppH-treated samples faithfully recapitulate TAP-treated samples. Specifically, there is enrichment for 22G-RNAs and mapped small RNA reads show no small RNA transcriptome-wide differences between RppH and TAP treatment. We propose that RppH can be used as a small RNA pyrophosphatase to enrich for triphosphorylated small RNA species and show that RppH- and TAP-derived datasets can be used in direct comparison. •We show that treatment of small RNA samples with RppH prior to sequencing library preparation increases the cloning efficiency of 5' triphosphorylated small RNAs;•RppH treatment is a valid alternative to TAP treatment.

9.
J Clin Invest ; 127(11): 4148-4162, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035280

RESUMO

Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1-KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1-KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot-specific cellular remodeling toward lowered energy storage capacity and browning of white adipocytes. These changes were associated with an increase in alternatively activated macrophages concomitant with enhanced sympathetic tone in adipose tissue. Remarkably, these alterations preceded the appearance of differences in body weight, highlighting the causal relation between the loss of CB1 and the triggering of metabolic reprogramming in adipose tissues. Finally, the lean phenotype of Ati-CB1-KO mice and the increase in alternatively activated macrophages in adipose tissue were also present at thermoneutral conditions. Our data provide compelling evidence for a crosstalk among adipocytes, immune cells, and the sympathetic nervous system (SNS), wherein CB1 plays a key regulatory role.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético , Macrófagos/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Peso Corporal , Ingestão de Energia , Homeostase , Ativação de Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/imunologia , Obesidade/metabolismo , Especificidade de Órgãos , Transcriptoma
10.
Cell Stem Cell ; 20(6): 801-816.e7, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28285904

RESUMO

Highly proliferative Lgr5+ stem cells maintain the intestinal epithelium and are thought to be largely homogeneous. Although quiescent intestinal stem cell (ISC) populations have been described, the identity and features of such a population remain controversial. Here we report unanticipated heterogeneity within the Lgr5+ ISC pool. We found that expression of the RNA-binding protein Mex3a labels a slowly cycling subpopulation of Lgr5+ ISCs that contribute to all intestinal lineages with distinct kinetics. Single-cell transcriptome profiling revealed that Lgr5+ cells adopt two discrete states, one of which is defined by a Mex3a expression program and relatively low levels of proliferation genes. During homeostasis, Mex3a+ cells continually shift into the rapidly dividing, self-renewing ISC pool. Chemotherapy and radiation preferentially target rapidly dividing Lgr5+ cells but spare the Mex3a-high/Lgr5+ population, helping to promote regeneration of the intestinal epithelium following toxic insults. Thus, Mex3a defines a reserve-like ISC population within the Lgr5+ compartment.


Assuntos
Proliferação de Células/fisiologia , Mucosa Intestinal/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Animais , Mucosa Intestinal/citologia , Camundongos , Camundongos Transgênicos , Proteínas de Ligação a RNA/genética , Receptores Acoplados a Proteínas G/genética , Células-Tronco/citologia
11.
Genome Biol ; 18(1): 45, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28249587

RESUMO

A variety of single-cell RNA preparation procedures have been described. So far, protocols require fresh material, which hinders complex study designs. We describe a sample preservation method that maintains transcripts in viable single cells, allowing one to disconnect time and place of sampling from subsequent processing steps. We sequence single-cell transcriptomes from >1000 fresh and cryopreserved cells using 3'-end and full-length RNA preparation methods. Our results confirm that the conservation process did not alter transcriptional profiles. This substantially broadens the scope of applications in single-cell transcriptomics and could lead to a paradigm shift in future study designs.


Assuntos
Criopreservação , Perfilação da Expressão Gênica , Análise de Célula Única , Transcriptoma , Animais , Linhagem Celular , Análise por Conglomerados , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Xenoenxertos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , RNA/genética , Estabilidade de RNA , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Análise de Célula Única/métodos
12.
Eur J Cancer ; 57: 104-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26916546

RESUMO

BACKGROUND: Prognosis of metastatic outcome in soft tissue sarcomas is an important clinical challenge since these tumours can be very aggressive (up to 50% of recurring events). A gene expression signature, Complexity INdex in SARComas (CINSARC), has been identified as a better prognostic factor compared to the current international grading system defined by the Fédération Nationale des Centres de Lutte Contre le Cancer. Since CINSARC has been established on frozen tumours analysed by microarrays, we were interested in evaluating its prognostic capacity using next generation sequencing (NGS) on formalin-fixed, paraffin-embedded (FFPE) blocks to better fit laboratory practices. METHODS: Metastatic-free survivals (training/validation approach with independent datasets) and agreement values in classification groups were evaluated. Also, RNA degradation threshold has been established for FFPE blocks and differences in gene expression due to RNA degradation were measured. RESULTS: CINSARC remains a strong prognostic factor for metastatic outcome in both microarray and RNA-seq technologies (P < 0.05), with similar risk-group classifications (77%). We defined quality threshold to process degraded RNA extracted from FFPE blocks and measured similar classifications with frozen tumours (88%). CONCLUSION: These results demonstrate that CINSARC is a platform and material independent prognostic signature for metastatic outcome in various sarcomas. This result opens access to metastatic prognostication in sarcomas through NGS analysis on both frozen and FFPE tumours via the CINSARC signature.


Assuntos
RNA Neoplásico/genética , Sarcoma/genética , Análise de Sequência de RNA/métodos , Neoplasias de Tecidos Moles/genética , Idoso , Intervalo Livre de Doença , Perfilação da Expressão Gênica/normas , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Análise em Microsséries/métodos , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Sarcoma/mortalidade , Neoplasias de Tecidos Moles/mortalidade
13.
Sci Rep ; 5: 13307, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26289671

RESUMO

Centromeres are the chromosomal loci at which spindle microtubules attach to mediate chromosome segregation during mitosis and meiosis. In most eukaryotes, centromeres are made up of highly repetitive DNA sequences (satellite DNA) interspersed with middle repetitive DNA sequences (transposable elements). Despite the efforts to establish complete genomic sequences of eukaryotic organisms, the so-called 'finished' genomes are not actually complete because the centromeres have not been assembled due to the intrinsic difficulties in constructing both physical maps and complete sequence assemblies of long stretches of tandemly repetitive DNA. Here we show the first molecular structure of an endogenous Drosophila centromere and the ability of the C-rich dodeca satellite strand to form dimeric i-motifs. The finding of i-motif structures in simple and complex centromeric satellite DNAs leads us to suggest that these centromeric sequences may have been selected not by their primary sequence but by their ability to form noncanonical secondary structures.


Assuntos
Centrômero/genética , Drosophila melanogaster/genética , Motivos de Nucleotídeos/genética , Sequências de Repetição em Tandem/genética , Animais , Pareamento de Bases , Sequência de Bases , Cromossomos de Insetos/genética , DNA Satélite/genética , Dimerização
14.
Genome Res ; 25(3): 445-58, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589440

RESUMO

Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.


Assuntos
Drosophila melanogaster/genética , Genoma , Animais , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Biologia Computacional , Mapeamento de Sequências Contíguas , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Cromossomos Politênicos , Mapeamento por Restrição
15.
Blood ; 122(7): 1256-65, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23699601

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer composed of at least 2 molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease. Here we provide a whole-genome-sequencing-based perspective of DLBCL mutational complexity by characterizing 40 de novo DLBCL cases and 13 DLBCL cell lines and combining these data with DNA copy number analysis and RNA-seq from an extended cohort of 96 cases. Our analysis identified widespread genomic rearrangements including evidence for chromothripsis as well as the presence of known and novel fusion transcripts. We uncovered new gene targets of recurrent somatic point mutations and genes that are targeted by focal somatic deletions in this disease. We highlight the recurrence of germinal center B-cell-restricted mutations affecting genes that encode the S1P receptor and 2 small GTPases (GNA13 and GNAI2) that together converge on regulation of B-cell homing. We further analyzed our data to approximate the relative temporal order in which some recurrent mutations were acquired and demonstrate that ongoing acquisition of mutations and intratumoral clonal heterogeneity are common features of DLBCL. This study further improves our understanding of the processes and pathways involved in lymphomagenesis, and some of the pathways mutated here may indicate new avenues for therapeutic intervention.


Assuntos
Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA/genética , Genoma Humano , Linfoma Difuso de Grandes Células B/genética , Mutação/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
16.
Blood ; 121(18): 3666-74, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23460611

RESUMO

Diffuse large B-cell lymphoma (DLBCL) accounts for 30% to 40% of newly diagnosed lymphomas and has an overall cure rate of approximately 60%. Previously, we observed FOXO1 mutations in non-Hodgkin lymphoma patient samples. To explore the effects of FOXO1 mutations, we assessed FOXO1 status in 279 DLBCL patient samples and 22 DLBCL-derived cell lines. FOXO1 mutations were found in 8.6% (24/279) of DLBCL cases: 92.3% (24/26) of mutations were in the first exon, 46.2% (12/26) were recurrent mutations affecting the N-terminal region, and another 38.5% (10/26) affected the Forkhead DNA binding domain. Recurrent mutations in the N-terminal region resulted in diminished T24 phosphorylation, loss of interaction with 14-3-3, and nuclear retention. FOXO1 mutation was associated with decreased overall survival in patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (P = .037), independent of cell of origin (COO) and the revised International Prognostic Index (R-IPI). This association was particularly evident (P = .003) in patients in the low-risk R-IPI categories. The independent relationship of mutations in FOXO1 to survival, transcending the prognostic influence of the R-IPI and COO, indicates that FOXO1 mutation is a novel prognostic factor that plays an important role in DLBCL pathogenesis.


Assuntos
Fatores de Transcrição Forkhead/genética , Linfoma Difuso de Grandes Células B/genética , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/fisiologia , Predisposição Genética para Doença , Células HEK293 , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação/fisiologia , Prognóstico , Adulto Jovem
17.
Acta Neuropathol ; 125(3): 373-84, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23184418

RESUMO

Recent sequencing efforts have described the mutational landscape of the pediatric brain tumor medulloblastoma. Although MLL2 is among the most frequent somatic single nucleotide variants (SNV), the clinical and biological significance of these mutations remains uncharacterized. Through targeted re-sequencing, we identified mutations of MLL2 in 8 % (14/175) of MBs, the majority of which were loss of function. Notably, we also report mutations affecting the MLL2-binding partner KDM6A, in 4 % (7/175) of tumors. While MLL2 mutations were independent of age, gender, histological subtype, M-stage or molecular subgroup, KDM6A mutations were most commonly identified in Group 4 MBs, and were mutually exclusive with MLL2 mutations. Immunohistochemical staining for H3K4me3 and H3K27me3, the chromatin effectors of MLL2 and KDM6A activity, respectively, demonstrated alterations of the histone code in 24 % (53/220) of MBs across all subgroups. Correlating these MLL2- and KDM6A-driven histone marks with prognosis, we identified populations of MB with improved (K4+/K27-) and dismal (K4-/K27-) outcomes, observed primarily within Group 3 and 4 MBs. Group 3 and 4 MBs demonstrate somatic copy number aberrations, and transcriptional profiles that converge on modifiers of H3K27-methylation (EZH2, KDM6A, KDM6B), leading to silencing of PRC2-target genes. As PRC2-mediated aberrant methylation of H3K27 has recently been targeted for therapy in other diseases, it represents an actionable target for a substantial percentage of medulloblastoma patients with aggressive forms of the disease.


Assuntos
Neoplasias Cerebelares , Predisposição Genética para Doença/genética , Histona-Lisina N-Metiltransferase/genética , Lisina/genética , Meduloblastoma , Sequência de Bases , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/genética , Estudos de Coortes , Proteínas de Ligação a DNA/genética , Feminino , Genoma , Histona Desmetilases/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/classificação , Humanos , Masculino , Meduloblastoma/classificação , Meduloblastoma/diagnóstico , Meduloblastoma/genética , Metilação , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética
18.
Nature ; 476(7360): 298-303, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21796119

RESUMO

Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). Here we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case to identify genes with mutations in B-cell NHL. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase, and 11.4% and 13.4% of DLBCL and FL cases, respectively, had mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis.


Assuntos
Histonas/metabolismo , Linfoma não Hodgkin/genética , Mutação/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Humano/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Perda de Heterozigosidade/genética , Linfoma Folicular/enzimologia , Linfoma Folicular/genética , Linfoma Difuso de Grandes Células B/enzimologia , Linfoma Difuso de Grandes Células B/genética , Linfoma não Hodgkin/enzimologia , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição MEF2 , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
19.
Chromosoma ; 120(4): 387-97, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21533987

RESUMO

Sciara coprophila (Diptera, Nematocera) constitutes a classic model to analyze unusual chromosome behavior such as the somatic elimination of paternal X chromosomes, the elimination of the whole paternal, plus non-disjunction of the maternal X chromosome at male meiosis. The molecular organization of the heterochromatin in S. coprophila is mostly unknown except for the ribosomal DNA located in the X chromosome pericentromeric heterochromatin. The characterization of the centromeric regions, thus, is an essential and required step for the establishment of S. coprophila as a model system to study fundamental mechanisms of chromosome segregation. To accomplish such a study, heterochromatic sections of the X chromosome centromeric region from salivary glands polytene chromosomes were microdissected and microcloned. Here, we report the identification and characterization of two tandem repeated DNA sequences from the pericentromeric region of the X chromosome, a pericentromeric RTE element and an AT-rich centromeric satellite. These sequences will be important tools for the cloning of S. coprophila centromeric heterochromatin using libraries of large genomic clones.


Assuntos
Centrômero/química , DNA/química , Dípteros/genética , Heterocromatina/química , Larva/genética , Cromossomos Politênicos/química , Sequências de Repetição em Tandem/genética , Cromossomo X/química , Animais , Centrômero/genética , Mapeamento Cromossômico , DNA/genética , Heterocromatina/genética , Hibridização in Situ Fluorescente , Masculino , Meiose/genética , Dados de Sequência Molecular , Filogenia , Cromossomos Politênicos/genética , Glândulas Salivares/química , Glândulas Salivares/citologia , Fixação de Tecidos , Cromossomo X/genética
20.
Mol Biol Evol ; 28(7): 1967-71, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21297157

RESUMO

The non-recombining Y chromosome is expected to degenerate over evolutionary time, however, gene gain is a common feature of Y chromosomes of mammals and Drosophila. Here, we report that a large palindrome containing interchromosomal segmental duplications is located in the vicinity of the first amplicon detected in the Y chromosome of D. melanogaster. The recent appearance of such amplicons suggests that duplications to the Y chromosome, followed by the amplification of the segmental duplications, are a mechanism for the continuing evolution of Drosophila Y chromosomes.


Assuntos
Drosophila melanogaster/genética , Duplicação Gênica , Genes de Insetos , Sequências Repetidas Invertidas , Cromossomo Y , Animais , Evolução Molecular , Modelos Genéticos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...